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SUMMARY

The quest continues for accurate and efficient computational fluid dynamics (CFD) algorithms for
convection-dominated flows. The boundary value ‘optimal’ Galerkin weak statement invariably requires
manipulation to handle the disruptive character introduced by the discretized first-order convection term.
An incredible variety of methodologies have been derived and examined to address this issue, in
particular, seeking achievement of monotone discrete solutions in an efficient implementation. The UT
CFD research group has participated in this search, leading to the development of consistent, encompass-
ing theoretical statements exhibiting quality performance, including generalized Taylor series (Lax–
Wendroff) methods, characteristic flux resolutions, subgrid embedded high-degree Lagrange bases and
assembled stencil optimization for finite element weak statement implementations. For appropriate model
problems, recent advances have led to accurate monotone methods with linear basis efficiency. This
contribution highlights the theoretical developments and presents quantitative documentation of achieved
high-quality solutions. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computational fluid dynamics (CFD) conservation law system for state variable q=
q(xj, t) is

L(q)=
(q
(t

+
(

(xj

( fj− f j
n)−s=0 on V× t¦Rn×R+, 15 j5n, (1)

where fj= f(uj, q) and f j
n= f(o (q/(xj) are the kinetic and dissipative flux vectors respectively,

the convection velocity is uj, o\0 is the diffusion coefficient that varies parametrically and s
is a source. Appropriate initial and boundary conditions close system (1) for the well-posed
statement.
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Computational difficulties occur as o�0, leading to the occurrence of ‘thin layer’ solutions
containing large gradients, e.g. boundary layer, shock. In CFD, this is the natural occurrence
for Reynolds number becoming large. Thereby, even though the analytical solution to (1)
remains smooth, monotone and bounded, the spatially discretized CFD solution process
becomes dominated by an oscillatory error mode, leading to instability in the presence of the
Navier–Stokes non-linearity inherent in fj.

Thus, a CFD algorithm research goal is an efficient, multi-dimensional ‘arbitrary’ grid
algorithm extracting an accurate, stable and monotone solution for (1) on a practical mesh for
arbitrary o. A favourite stabilizing technique is artificial viscosity [1–3] and/or flux correction
operations [4,5] containing one or more arbitrary parameters. Flux vector splitting methods [6]
replace parameters with switches, but solutions may still exhibit oscillations near strictly local
extrema. Implementation of non-linear correction factors called limiters [7] requires a relatively
dense mesh for interpolation to attain an essentially non-oscillatory (ENO) solution. Finally,
these theories are developed via one-dimensional schemes, and hence become theoretically
tedious in a multi-dimensional application.

‘Intelligent’ algorithms for handling solution mesh adaptation in an automatic manner have
been extensively examined in finite element (FE) solution-adaptive ‘p and hp ’ forms [8–14].
Several advantages, including ‘unstructured meshing,’ accrue to these algorithms, but at a
significant cost in increased algorithm operation count and storage requirements that can
hinder achieving practical mesh solutions. Recent developments in the area of subgrid-scale
resolution include hierarchical (hp) elements [15] and the inclusion of nodeless bubble
functions [16]. Solution monotonicity is typically not an ingredient in these theories, and as the
degrees of freedom (DOF) number increase, especially for three-dimensional cases, the
algebraic system matrix order increases rapidly, hence, the computer resource requirement also
increases. Numerical linear algebra efficiency issues then also become a central issue.

This invited paper summarizes developed weak statement theory and documents perfor-
mance for verification and benchmark problem statements belonging to the Navier–Stokes
problem class.

2. THE WEAK STATEMENT FORMULATION

The ‘weak statement’ underlies the vast majority of CFD algorithms. The associated integral
constraint associated with (1) is&

V
w
�(q
(t

+
(

(xj

( fj− f j
n)−s

n
dV=0, (2)

where w is any ‘admissible’ test function. Thereafter, an FE spatial semi-discretization employs
the mesh Vh=@ eVe, with Ve the generic computational domain. The associated FE weak
statement implementation for (1) and (2) employs the approximation

q(x, t):qh(x, t)=.
e

qe(x, t), (3)

qe(x, t)={Nk(x)}T{Q(t)}e, (4)

where { · } denotes a column matrix, and the trial space FE basis {Nk(x)} typically contains
Lagrange polynomials complete to degree k, plus perhaps ‘bubble functions’ [16]. The resultant
FE implementation via a Green–Gauss theorem is [17]
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WSh=Se
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�(qh
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−s

�
dt−

&
Vh

({Nk}
(xj

( fj− f j
n)h dt

+
7
(VeS(Vh

{Nk}( fj− f j
n)hn̂j ds

�
, (5)

where Se symbolizes ‘assembly’ of local (element) coefficients into global arrays, and the
surface integral contains (unknown) boundary fluxes for Dirichlet (fixed) boundary conditions.

For all dimensions n of V, Equation (5) yields an ordinary differential equation (ODE)
system

WSh= [M]{Q(t)}%+{RQ}=0. (6)

Here, {Q(t)}% denotes d{Q}/dt, and (6) defines the time derivative necessary to evaluate a
temporal Taylor series (TS), e.g. the u implicit one-step Euler family,

{Q(tn+1)}
{Q}n+1={Q}n−Dt [M]−1(u{RQ}n+1+ (1−u){RQ}n)+H.O.T., (7)

where subscript n denotes time level. Clearing [M]−1 and collecting terms to a homogeneous
form produces the ‘solvable’ (non-linear) terminal algorithm statement

{FQ}= [M]{Qn+1−Qn}+Dt(u{RQ}n+1+ (1−u){RQ}n)={0}. (8)

The Newton algorithm for the solution of (8) involves the processes

[JAC]{dQ}p+1= −{FQ}n+1
p , (9a)

{Q}n+1
p+1
{Q}n+1

p +{dQ}p+1=Qn+ %
p

i=1

{dQ}i+1, (9b)

[JAC]=
({FQ}
({Q}

= [M]+uDt
�({RQ}
({Q}

�
. (9c)

3. STABILITY, THE TAYLOR WEAK STATEMENT

The UT CFD group research focus [1,18,24] has generalized the methods of Lax and Wendroff
[19] and Donea [20], as the Taylor weak statement (TWS). For Equation (1), with Aj
(fj/(q
as the kinetic flux vector Jacobian, the inviscid form is

L(q)=
(q
(t

+Aj

(q
(tj

=0. (10)

Temporal derivatives are taken in the manner of Lax–Wendroff, convex combinations of
which admit arbitrary weightings, hence

(2q
(t2 =a

�
Aj

(
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�

+b
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(
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(
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+m
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Al

(

(xl

�
Ak

(

(xk

�
Aj

(q
(xj

��n
,

(11)

which when substituted into an explicit Taylor time series [1] and then substituted into (4)
yields the ‘Taylor series-modified’ semi-discrete form
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Lm(q)=L(q)−
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, (12)

where L(q) remains as defined in (1).
A wide range of independently derived, dissipative Galerkin weak statement algorithms

belong to the TWS family for specific linearizations and (a, b, g, m) selections in (12). In
one-dimensional cases, 16 such algorithms are documented in [1]. The extension to multi-
dimensional forms, and the QUICK finite volume family is reported in [18], and to complete
incompressible Navier–Stokes forms in [24]. The familiar trade names include streamline–
upwind Petrov–Galerkin (SUPG), Taylor Galerkin (TG) and least-squares (LS). Each selects
m=0, since two spatial derivatives do not exist in a linear basis implementation. Generally
speaking, LS retains all remaining terms, TG retains the b and g terms and SUPG retains the
a and b terms.

For incompressible flow applications, the kinetic flux vector Jacobian matrix product is
approximated as the diagonal matrix [Aj Ak ]: [uj uk ]. The TWS b term can then be
conveniently combined into the dissipative flux vector yielding (1) in the form

Lm(q)=L(q)−
Dt
2
(

(xj

�
bujuk

(q
(xk

�


(q
(t

+
(

(xj

( fj− f j
m)−s=0, (13)

with the b dissipation residing in the TWS-modified dissipative flux vector

f j
m


! 1
Re

(1+CqRe t)
(q
(xj

+
bDt

2
ujuk

(q
(xk

"
, (14)

where Re is the Reynolds number, Cq is the appropriate TKE model constant set, and
Re t
vt/n, the ratio of turbulent to laminar kinemetic viscosity, is the turbulent Reynolds
number.

The TWS g term is similarly a dissipative operator; however, it resides solely as a time
derivative augmentation in the Newton Jacobian side of the penultimate algebraic state-
ment. For time-accurate simulations, the g term is effective for improved phase accuracy;
conversely, it is of no consequence in obtaining a steady state solution.

It is sometimes required, e.g. SUPG, to replace the TWS factor Dt by a length scale.
Through the definition of the scalar, multi-dimensional Courant number C
 �u�(Dt/h),
where �u� is velocity magnitude and h is a local mesh measure, Equation (13) can be
replaced with

Lm(q)
L(q)−
h
2
(

(xj

�
bq

ujuk

�u�
(q
(xk

�
=0, (15)

where bq is the state variable number-dependent dissipation level.

4. FREQUENCY ANALYSIS, BASIC PERFORMANCE

In one-dimensional cases, the finite difference von Neumann stability analysis is extended
to arbitrary width stencils [18], admitting full theoretical prediction of comparative
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performance of the range of GWS–TWS algorithms. The linear assumption focuses on the
single Fourier semi-discrete mode

qv
h ( jDx, t)=exp[iv( jDx−U(v)t)]. (16)

The phase velocity Fh of the approximation is U(v), where v is the Fourier mode fre-
quency, and the relative phase velocity is U(v)/u, where u is for the analytical solution.
The associated amplification factor is

Gh

Qj

n+1

Qj
n =exp[− ivU(v)Dt ]=exp[− imCFh] (17)

for time step Dt. For U(v) real, the modulus of Gh is unity, hence the algorithm is
non-dissipative.

Replacing v by wavenumber m=vDx admits the expressed Courant number form in
terms of Fh. Thereby, a solution for relative phase velocity is achieved as

Fh=
tan−1[Im(Gh)/Re(Gh)]

−mC
, (18)

where ‘Im’ and ‘Re’ denote imaginary and real parts respectively.
In [18], the relative velocity Fh and amplification factor modulus �Gh� were calculated for

the range of TWS and FD/FV algorithms for Courant numbers C between 0 and 1 and
wavenumbers between 0 and p. The non-dissipative trapezoidal rule (u=1

2) was used for
each time integration. Phase velocity results are summarized in Figure 1 for Courant
numbers of 1

8,
1
2 and 1. All methods fail totally at m=p, which corresponds to the 2Dx

mode, which cannot be propagated by a discrete method. Conversely, the k=1, 2, 3 FE
basis TWS (b, g) algorithms can each propagate the entire spectrum at C=1 via optimum
selection of g(−1

2, − 1
15, − 1

18 for k=1, 2, 3 respectively). Across the Courant number spec-
trum, the Crank–Nicolsen (CN) FD and QUICK FV schemes are universally poorer per-
formers than the k=1 GWS–TWS algorithms and the k=2, 3 GWS–TWS algorithms are
each an improvement over k=1.

The companion amplification factor modulus distributions are summarized in Figure 2
for C=1

2 for the various dissipative algorithms. The CN algorithm and each of the six FE
GWS algorithms are non-diffusive and have an amplification factor modulus identically
equal to unity. The amplification factor modulus at C=1

2 for the QUICK methods, and
linear upwind finite difference method are each compared with dissipative linear basis b

TWS FE methods with b=1
8,

1
6 and 1

3, which produce a comparable level of short-
wavelength dissipation. Dissipation at wavenumbers approaching p contributes to stability,
since 2Dx waves are damped accordingly. The linear upwind method also exhibits signifi-
cant dissipation at wavenumbers as small as p/4, indicating that every solution component
is heavily damped and accuracy is compromised. The trends in Figure 2 become more
dissipative at larger Courant numbers.

Documentary computational experiments confirm these theoretical distinctions, and also
help refine the k=1 basis TWS algorithm for optimal performance based on phase veloc-
ity. The theory [18] generates a two-step method with g�g1, g2, with each optimized as a
function of C. The resultant ga-TWS k=1 algorithm maintain 1% phase accuracy on
0BC51, for m]3p/4 in a tridiagonal algorithm. Figure 3 compares the range of
algorithm performance for viscous propagation of a step function and non-viscous
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propagation of a one-element wide square wave for C=1
4,

1
2,

3
4 and 1. Only the

optimized k=1, ga-TWS algorithm performance produces acceptable accuracy over the
range.

Figure 1. Phase velocity distributions of various GWS–TWS and FD/FV algorithms.
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Figure 2. Amplification factor modulus for select dissipative algorithms at C=1
2.

5. MODIFIED EQUATION ANALYSIS, n-DIMENSIONS

The ‘modified equation’ analysis procedure, developed for finite difference methods [25], is
extendible to GWS–TWS FE CFD methods. The k=1 basis recursion relation form for the
fourth-order-accurate n=1 TWS algorithm with diffusion coefficient n is

L. h(Q)=
�2+C2

12
(Qj+1

n+1−Qj+1
n )+

8−C2

12
(Qj

n+1−Qj
n)+

2−C2

12
(Qj−1

n+1−Qj−1
n )

�
+

C2

4
(Qj+1

n+1/2−Qj−1
n+1/2)−

n

2
(Qj+1

n+1/2−2Qj
n+1/2+Qj+1

n+1/2). (19)

The associated modified equation, where T denotes the time term and Xp denotes the ph spatial
derivative, is

T+CX= −nX2−
n(2C2−1)

12
X4−

C(6n2−C4−5C2−4)
720

X5+ · · · . (20)

The fourth-order accuracy (for n=0) previously predicted is thus confirmed in (20).
While Fourier analysis is tractable in one-dimensional cases, the modified equation analysis

is readily extended to two- and three-dimensional cases. In two-dimensional form, the uniform
mesh, u implicit GWS k=1 basis algorithm modified equation is [24]

T+CxX+CyY=2(2u−1)(Cx
2X2+CxCyXY+Cy

2Y2)

+8(−3u2+3u−1)(Cx
3X3+3Cx

2CyX
2Y+3CxCy

2Y2X+Cy
3Y3)

+4(2u−1)(2u2−2u+1)

× (Cx
4X4+4Cx

3CyX3Y+6Cx
2Cy

2X2Y2+4CxCy
3Y3X+Cy

4Y4)+ · · · .
(21)

Stability properties are tenuous, as the second-order error term requires u]1
2 for positivity,

which makes the fourth-order term also positive or zero. The third-order term cannot be
eliminated by a real value of u.

Stability is predictably improved for the k=1 basis TWS algorithm with the originally
arbitrary directional coefficients bij and gij. The resultant n=2 modified equation is [24]
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Figure 3. One-dimensional verification problems (from [18], Figure 6).
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T+C2X+C2Y= (u−1
2)(Cx

2X2+2CxCyXY+Cy
2Y2)

+ (bxxCx
2X2+bxyCxCyXY+byyCy

2Y2)

−Cx
3((u−1)(u+bxx)+gxx+1

3)X
3

−Cx
2Cy((u−1)(3u+bxx+bxy)+gxx+gxy+1)X2Y

−Cy
2Cx((u−1)(3u+byy+bxy)+gyy+gxy+1)XY2

−Cy
3((u−1)(u+byy)+gxy+

1
3)y

3

−Cx
4((u−1)(u+bxx)+gxx+1

3+ · · · ), (22)

for which the third-order errors can be eliminated via

bxx=bxy=bxy=
1
2
−u+o, gxx=gyy=gxy=

1
2
−

u

2
+o(1−u), (23)

for o an arbitrary constant. The n=1 fourth-order-accurate TWS algorithm is achieved by
selecting o=0 and u=1

2. The comparable n=2 TWS modified equation is

T+CxX+CyY=o(Cx
2X2+2CxCyXY+Cy

2Y2)+
Cx

2(Cx−1)(Cx+1)o
6

X4

+
Cy

2(Cy−1)(Cy+1)o
6

Y4+
CxCy(2Cx

2 −1)o
3

X3Y+
CxCy(2Cy

2−1)o
3

Y3X

+
(6Cx

2Cy
2−Cx

2 −Cy
2)o

6
X2Y2+ · · · . (24)

For o\0, the method should be stable as second-order errors are positive. For CxB1 and
CyB1, stability is enhanced as fourth-order errors along co-ordinates X4Y4 are negative. For
CxB1/
2 and CyB1/
2, additional stability accrues as fourth-order errors along co-
ordinates X3Y, Y3X are negative. For CxB1/
3 and CyB1/
3, stability is further enhanced
as fourth-order errors along co-ordinates X2Y are negative. Another TWS selection with u=1

2,
which eliminates fourth-order errors, is [24]

bxx=byy=bxy=o, gxx=
o

2
−

1
4
+

1
6

Cx
2, gxx=o−

1
4

, gxx=
o

2
−

1
4
+

1
6

Cy
2.

(25)

Figure 4 confirms the GWS–TWS algorithm performance improvements for the classic
rotating cone validation [17].

6. SHOCK CAPTURING, MONOTONICITY

As another approach to stability, distinct from the TWS formulation in theoretically requiring
a monotone solution, the construction of a subgrid embedded (SGM) FE basis [21] addresses
the fundamental issue of multi-dimensional practical (coarse) solution accuracy with guaran-
teed monotonicty and minimal (optimal) numerical diffusion. It is based on a genuinely
non-linear, non-hierarchical basis for implementing GWS. Verification for both linear and
non-linear convection–diffusion equation SGM finite element solutions is documented [22] for
small o (O10−5) in (1) for which monotone and nodally accurate solutions are obtained on
coarse grids.
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The SGM basis is appropriate only for f j
n in (1) [21]. The key efficiency ingredient is

reduction to linear basis element matrix rank for any embedded degree via static condensation.
The theory augments the diffusion term in (5) via an embedded function g(x, c), hence the
name ‘SubGrid eMbedded’. The definite integral form of the resultant SGM basis (denoted
{Ns}) matrix is&

Ve

({Ns}
(x

({Ns}T

(x
dx [

&
Ve

g(x, c)
({Nk}
(x

({Nk}T

(x
dx

)R
, (26)

where the statically condensed, reduced Rank form is denoted �R. The embedded polynomial
g(x, c) contains at least one arbitrary parameter c for each co-ordinate direction and for each
additional Lagrange degree k]2. The resultant n=1 linear model problem recursion relation
yields a constraint on c for a monotone solution [22], which is specifically solution-dependent
for the non-linear problem (1).

Performance of the SGM element is confirmed for numerous verifications and benchmarks
for n=1, 2, 3 [21,22]. Of particular note is the off-design de Laval nozzle shock benchmark
problem [23], containing numerous subtle features. Figure 5 summarizes the essence of the
comparative steady solutions obtained via TWS and SGM methodologies. The TWS solutions
are monotone only for the shock smeared across three or more elements. Conversely, the SGM

Figure 4. GWS–TWS k=1 algorithm solutions for rotating cone, u=0.5, C( =0.5, (a) analytical, (b) GWS, (c) TWS,
fourth-order, (d) TWS, phase optimized [24].
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Figure 5. Steady state SGM solution distributions for transonic compressible flow, Re=106.
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solution captures the shock on one element and is monotone. The key to this performance
is the distinct non-linear parameter estimation c=c(q) for the state variable q= (r, ru, E),
denoted in Figure 5(e) as ‘RSG’, indicating a predicted sharp post-shock dissipation level
critical to monotonicity.

A companion theory [26] has produced the non-linear element upstream weak statement
(NEWS) algorithm, for the compressible Euler equations, as a characteristics-based replace-
ment of the TWS formulation. The kinetic flux vector in (1) is replaced with

fj
 fj−oc
�

c(bajal+bNaj
Nal

N)
(q
(xl

+aj

�(fl
q

(xl

+d
(fl

p

(xl

�n
, (27)

where the bracket contains the contraction of an upstream-bias tensor with the gradient of
q. The first two terms denote the acoustics component, which for transonic Mach number
is designed non-negligible only within a narrow multi-dimensional conical region about the
cross-flow direction. The parentheses contain the convection and pressure decomposition of
the kinetic flux vector fj.

The positive variables o and c are a reference length and the upstream-bias ‘smoothness’
controller. In regions of solution smoothness, c decreases from unity, hence fc approaches
fj. The unit vectors a=a(q) and aN=aN(q) are parallel and perpendicular to the velocity,
c=c(q) denotes the local speed of sound and b=b(M) and bN=bN(M) are two Mach
number-dependent upstream-bias functions. In the acoustics limit, b(0)=bn(0)=1, and
b(M)
0 for M]Ms, where Ms denotes a subsonic threshold Mach number. Conversely,
bN remains positive and approaches zero as M increases, d=d(M) is a scalar pressure-
gradient influence function, with 05d(M)51, d(0) and d(M)=1 for M=1. Figure 6
graphs these NEWS variables, which are analytically derivable [26].

In NEWS, the streamwise dissipation depends on Mach number, while the cross-flow
dissipation decreases for increasing Mach number and becomes negligible for supersonic
flows. The acoustics perturbation is important for accurate approximate acoustic wave
propagation and is also pivotal for global stability. In fact, without acoustics perturbation,
the characteristic eigenvalues turn negative, hence unstable. Figure 7 documents the NEWS
performance for the supersonic compression ramp Ma�=3.0 validation problem. The
oblique shock density solution is essentially non-oscillatory and freely crosses the outflow
boundary without reflection.

7. CONCLUSIONS

Weak statement theory provides a rich basis for construction of CFD algorithms for the
Navier–Stokes equations. The Taylor extension, coupled with the FE basis function is
fundamental to the conversion to a stable computable form. Herein, GWS and various
TWS formulations are documented for stability and accuracy for a range of traditional
and non-traditional Lagrange basis forms, confirmed to control/annihilate short wave-
length dispersion error pollution. In addition to providing a rational basis for CFD al-
gorithm design, the TWS process recovers a range of schemes derived by alternative means
within a rational hierarchical theory that provides guidance for the next level of develop-
ment.
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Figure 6. NEWS algorithm components, (a) upstream-bias functions b and d, (b) upstream-bias streamwise eigenval-
ues.

Figure 7. Compression ramp, Ma�=3.0 (a) 35×35 element grid, (b) NEWS solution density contours.
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